Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ming-Tian Li, Cheng-Gang Wang,* Yu Wu and Xu-Cheng Fu

Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China

Correspondence e-mail: wangcg23@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.038 wR factor = 0.114 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis(ethylenediamine)nickel(II) bis(4-aminonaphthalene-1-sulfonate) dihydrate

In the title complex, $[Ni(C_2H_8N_2)_2(H_2O)_2](C_{10}H_8NO_3S)_{2^{-2}}$ 2H₂O, the Ni atom of the centrosymmetric cation has a distorted octahedral coordination geometry, and is bonded to four N atoms, from two diethylenediamine ligands, and to two water O atoms. Symmetry-related 4-aminonaphthalene-1-sulfonate anions are antiparallel. The crystal structure is stabilized by π - π interactions and N-H···O, O-H···O and O-H···N hydrogen bonds.

Received 11 July 2005 Accepted 18 July 2005 Online 23 July 2005

Comment Owing to th

Owing to the weak coordination ability of sulfonate anions with transition metals, sulfonates usually act as uncoordinated counter-ions (Chen *et al.*, 2002). We report the crystal structure of such a compound, $[Ni(en)_2(H_2O)_2](ans)_2\cdot 2H_2O$, (I) (en is diethylenediamine and ans is 4-aminonaphthalene-1-sulfonate).

The molecular structure of (I) is shown in Fig. 1, and selected bond distances and angles are given in Table 1. The Ni atom of the centrosymmetric cation has a distorted octahedral geometry and is coordinated by four N atoms from two diethylenediamine ligands, which lie in the equatorial plane, and by two water O atoms occupying the axial sites. The Ni-N distances [2.081 (2) and 2.094 (2) Å] are in close agreement with the equivalent distances in the complex $[Ni(C_{12}H_{12}N_4)_2]$ $(H_2O)_2$ Cl₂·H₂O [2.0857 (17) and 2.0962 (17) Å; Sbai *et al.*, 2002]. However, they are shorter than those in the complex $[Cu(en)_2(H_2O)_2][Ni(en)_3]_2(2,6-nds)_3 \cdot 4H_2O$ [2.122 (2), 2.124 (2) and 2.132 (2) Å; 2,6-nds is napthalene-2,6-disulfonate; Cai, Feng & Hu, 2001; Cai, Chen et al., 2001]. The Ni-O distance is 2.1421 (19) Å, which is slightly longer than the corresponding distances in the complex [Ni(C₃H₁₀N₂)₂(- H_2O_2 (C₆H₆NO₃S)₂ [2.1358 Å; Kim & Lee, 2002].

As shown in Fig. 2, an organic cation layer is linked to an inorganic anionic layer through a series of N-H···O, O-H···O and O-H···N hydrogen bonds (Table 2), and adjacent 4-aminonaphthalene-1-sulfonate anions are antiparallel, showing significant π - π interactions. The plane-to-plane distances and displacement angles of Cg1··· $Cg2^{i}$ are 3.371 and 3.359 Å, and 0.96 and 16.41°, respectively [Cg1 and Cg2 are

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Figure 2

A view of the crystal packing of (I), showing the hydrogen bonds as dashed lines (see Table 2 for details).

Figure 1

View of the molecular structure of (I), showing the labelling scheme and 50% probability displacement ellipsoids. Only one anion and one water molecule of crystallization are shown. [Symmetry code: (a) -x, -y, -z.] H atoms have been omitted for clarity.

the C3-C7/C12 and C7-C12 ring centroids; symmetry code: (i) 1 - x, 1 - y, -z]. These interactions together with the hydrogen bonds stabilize the crystal structure.

Experimental

Ethylenediamine (0.06 g, 1 mmol) was added to an aqueous solution (20 ml) of Ni(NO₃)₂·6H₂O (0.15 g, 0.5 mmol). The mixture was stirred for 2 h at room temperature. The solution was then treated with the sodium salt of 4-aminonaphthalene-1-sulfonic acid tetrahydrate (0.32 g, 1 mmol) in ethanol (10 ml). After filtration, the palered solution obtained was allowed to stand at room temperature. Well shaped pale-purple block-like crystals were obtained by slow evaporation of the solvent over a period of about one week.

Crystal data

$[Ni(C_2H_8N_2)_2(H_2O)_2]$ -	$D_x = 1.573 \text{ Mg m}^{-3}$
$(C_{10}H_8NO_3S)_2 \cdot 2H_2O$	Mo $K\alpha$ radiation
$M_r = 695.45$	Cell parameters from 2427
Monoclinic, $P2_1/c$	reflections
a = 12.406 (2) Å	$\theta = 2.7 - 27.0^{\circ}$
b = 9.6396 (17) Å	$\mu = 0.87 \text{ mm}^{-1}$
c = 12.276 (2) Å	T = 292 (2) K
$\beta = 90.479 (3)^{\circ}$	Block, pale purple
V = 1468.0 (5) Å ³	$0.30 \times 0.18 \times 0.12 \text{ mm}$
Z = 2	
Data collection	
Bruker SMART CCD area-detector	3336 independent reflections
diffractometer	2698 reflections with $I > 2\sigma(I)$
φ and φ scans	$R_{int} = 0.031$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS: Bruker, 2000)	$h = -15 \rightarrow 16$
$T_{\rm min} = 0.781, T_{\rm max} = 0.903$	$k = -10 \rightarrow 12$

 $T_{\min} = 0.781, T_{\max} = 0.903$ 8920 measured reflections

Refinement

Definition E^2	II stoms treated by a minture of
Reinfement on r	n atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.038$	independent and constrained
$wR(F^2) = 0.114$	refinement
S = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0643P)^2]$
3336 reflections	where $P = (F_0^2 + 2F_c^2)/3$
236 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ni1—N2 Ni1—N1	2.081 (2) 2.094 (2)	Ni1-O1	2.1421 (19)
$\begin{array}{l} N2 - Ni1 - N2^{i} \\ N2 - Ni1 - N1 \\ N2^{i} - Ni1 - N1 \\ N2 - Ni1 - N1^{i} \\ N2 - Ni1 - O1^{i} \end{array}$	180 83.15 (9) 96.85 (9) 96.85 (9) 91.74 (8)	N2-Ni1-O1 N1-Ni1-O1 $N1^{i}-Ni1-O1$ $O1^{i}-Ni1-O1$	88.26 (8) 89.10 (8) 90.90 (8) 180

Symmetry code: (i) -x, -y, -z.

Table 2			
Hydrogen-bond	geometry ((Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1B \cdots O3^{ii}$	0.87 (2)	2.56 (2)	3.358 (3)	153 (2)
$N1 - H1A \cdots O2^{iii}$	0.88 (2)	2.36 (2)	3.147 (3)	148 (3)
$N2-H2B\cdots O5^{iv}$	0.90(2)	2.11(2)	2.995 (3)	167 (3)
$N2-H2A\cdots O3^{v}$	0.89 (2)	2.25 (2)	3.107 (3)	161 (3)
$O1 - H1F \cdot \cdot \cdot O2^v$	0.72(3)	2.13 (4)	2.803 (3)	156 (3)
N3-H3B···O3 ^{vi}	0.81(2)	2.64 (2)	3.449 (3)	173 (3)
N3-H3A···O4 ^{vii}	0.84(2)	2.26 (2)	3.079 (3)	167 (2)
$O5-H5B\cdots O2^{ii}$	0.80 (3)	2.19 (4)	2.940 (3)	157 (7)
$O1 - H1E \cdot \cdot \cdot O5^{viii}$	0.87 (4)	1.99 (4)	2.822 (3)	159 (3)
$O5-H5A\cdots N3^{ix}$	0.86(2)	2.03 (2)	2.879 (3)	169 (3)

Symmetry codes: (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) -x, -y, -z + 1; (iv) -x, -y + 1, -z; (v) x, y, z - 1; (vi) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (vii) -x + 1, -y, -z + 1; (viii) x, y - 1, z; (ix) -x + 1, -y + 1, -z + 1.

The water and amine H atoms were located in difference Fourier maps and refined isotropically. All the other H atoms were placed in

 $l = -14 \rightarrow 15$

geometrically idealized positions and constrained to ride on their parent atoms with C-H distances of 0.93–0.97 Å and $U_{iso}(H) =$ $1.2U_{eq}(C).$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology (No. RCT2004011).

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SMART (Version ?), SAINT (Version ?) and SADABS. (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, J.-W., Chen, C.-H., Liao, C.-Z., Yao, J.-H., Hu, X.-P. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137-1142.
- Cai, J.-W., Feng, X.-L. & Hu, X.-P. (2001). Acta Cryst. C57, 1168–1170.
- Chen, C.-H., Cai, J.-W., Liao, C.-Z., Feng, X.-L., Chen, X.-M. & Seik, W. Ng. (2002). Inorg. Chem. 41, 4967-4974. Kim, C. H. & Lee, S. G. (2002). Acta Cryst. C58, m421-m423.
- Sbai, F., Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2002). Acta Cryst. E58, m337-m339.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.