Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Ming-Tian Li, Cheng-Gang Wang, ${ }^{*}$ Yu Wu and Xu-Cheng Fu
Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's
Republic of China

Correspondence e-mail:
wangcg23@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.114$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaquabis(ethylenediamine)nickel(II) bis(4-amino-naphthalene-1-sulfonate) dihydrate

In the title complex, $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}$.$2 \mathrm{H}_{2} \mathrm{O}$, the Ni atom of the centrosymmetric cation has a distorted octahedral coordination geometry, and is bonded to four N atoms, from two diethylenediamine ligands, and to two water O atoms. Symmetry-related 4-aminonaphthalene-1sulfonate anions are antiparallel. The crystal structure is stabilized by $\pi-\pi$ interactions and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Owing to the weak coordination ability of sulfonate anions with transition metals, sulfonates usually act as uncoordinated counter-ions (Chen et al., 2002). We report the crystal structure of such a compound, $\left[\mathrm{Ni}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\text { ans })_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (I) (en is diethylenediamine and ans is 4 -aminonaphthalene-1-sulfonate).

(I)

The molecular structure of (I) is shown in Fig. 1, and selected bond distances and angles are given in Table 1. The Ni atom of the centrosymmetric cation has a distorted octahedral geometry and is coordinated by four N atoms from two diethylenediamine ligands, which lie in the equatorial plane, and by two water O atoms occupying the axial sites. The $\mathrm{Ni}-$ N distances [2.081 (2) and 2.094 (2) \AA] are in close agreement with the equivalent distances in the complex $\left[\mathrm{Ni}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4}\right)_{2}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}[2.0857$ (17) and 2.0962 (17) \AA; Sbai et al., 2002]. However, they are shorter than those in the complex $\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{Ni}(\mathrm{en})_{3}\right]_{2}(2,6 \text {-nds })_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O} \quad[2.122(2)$, 2.124 (2) and 2.132 (2) \AA; 2,6-nds is napthalene-2,6-disulfonate; Cai, Feng \& Hu, 2001; Cai, Chen et al., 2001]. The $\mathrm{Ni}-\mathrm{O}$ distance is $2.1421(19) \AA$, which is slightly longer than the corresponding distances in the complex $\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}(-\right.$ $\left.\left.\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}[2.1358 \AA$; Kim \& Lee, 2002].

As shown in Fig. 2, an organic cation layer is linked to an inorganic anionic layer through a series of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2), and adjacent 4 -aminonaphthalene-1-sulfonate anions are antiparallel, showing significant $\pi-\pi$ interactions. The plane-to-plane distances and displacement angles of $C g 1 \cdots C g 2^{i}$ are 3.371 and $3.359 \AA$, and 0.96 and 16.41°, respectively [$C g 1$ and $C g 2$ are

Received 11 July 2005 Accepted 18 July 2005 Online 23 July 2005

Figure 1
View of the molecular structure of (I), showing the labelling scheme and 50% probability displacement ellipsoids. Only one anion and one water molecule of crystallization are shown. [Symmetry code: (a) $-x,-y,-z$.] H atoms have been omitted for clarity.
the C3-C7/C12 and C7-C12 ring centroids; symmetry code: (i) $1-x, 1-y,-z]$. These interactions together with the hydrogen bonds stabilize the crystal structure.

Experimental

Ethylenediamine ($0.06 \mathrm{~g}, 1 \mathrm{mmol}$) was added to an aqueous solution (20 ml) of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{~g}, 0.5 \mathrm{mmol})$. The mixture was stirred for 2 h at room temperature. The solution was then treated with the sodium salt of 4 -aminonaphthalene-1-sulfonic acid tetrahydrate ($0.32 \mathrm{~g}, 1 \mathrm{mmol}$) in ethanol (10 ml). After filtration, the palered solution obtained was allowed to stand at room temperature. Well shaped pale-purple block-like crystals were obtained by slow evaporation of the solvent over a period of about one week.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]-$	$D_{x}=1.573 \mathrm{Mg} \mathrm{m}^{-3}$
$\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{~S}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Mo $K \alpha$ radiation
$M_{r}=695.45$	Cell parameters from 2427
Monoclinic, $P 2_{1} / c$	reflections
$a=12.406$ (2) A	$\theta=2.7-27.0^{\circ}$
$b=9.6396(17) \AA$	$\mu=0.87 \mathrm{~mm}^{-1}$
$c=12.276$ (2) \AA	$T=292(2) \mathrm{K}$
$\beta=90.479$ (3) ${ }^{\circ}$	Block, pale purple
$V=1468.0$ (5) \AA^{3}	$0.30 \times 0.18 \times 0.12 \mathrm{~mm}$
$Z=2$	
Data collection	
Bruker SMART CCD area-detector diffractometer	3336 independent reflections 2698 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.031$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.5^{\circ}$
(SADABS; Bruker, 2000)	$h=-15 \rightarrow 16$
$T_{\text {min }}=0.781, T_{\text {max }}=0.903$	$k=-10 \rightarrow 12$
8920 measured reflections	$l=-14 \rightarrow 15$

$D_{x}=1.573 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \mathrm{\alpha}$ radiation
Cell parameters from 2427
\quad reflections
$\theta=2.7-27.0^{\circ}$
$\mu=0.87 \mathrm{~mm}^{-1}$
$T=292(2) \mathrm{K}$
Block, pale purple
$0.30 \times 0.18 \times 0.12 \mathrm{~mm}$

3336 independent reflections
2698 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\max }=27.5^{\circ}$
$h=-15 \rightarrow 16$
$k=-10 \rightarrow 12$
$l=-14 \rightarrow 15$

Figure 2
A view of the crystal packing of (I), showing the hydrogen bonds as dashed lines (see Table 2 for details).

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.114$
$S=1.07$
3336 reflections
236 parameters

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Ni} 1-\mathrm{N} 2$	$2.081(2)$	$\mathrm{Ni} 1-\mathrm{O} 1$	$2.1421(19)$
$\mathrm{N} 11-\mathrm{N} 1$	$2.094(2)$		
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{i}}$	180	$\mathrm{~N} 2-\mathrm{Ni} 1-\mathrm{O} 1$	$88.26(8)$
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 1$	$83.15(9)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 1$	$89.10(8)$
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1$	$96.85(9)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 1$	$90.90(8)$
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$96.85(9)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 1$	180
$\mathrm{~N} 2-\mathrm{Ni} 1-\mathrm{O} 1^{\mathrm{i}}$	$91.74(8)$		

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots 3^{3 i}$	0.87 (2)	2.56 (2)	3.358 (3)	153 (2)
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\text {iii }}$	0.88 (2)	2.36 (2)	3.147 (3)	148 (3)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.90 (2)	2.11 (2)	2.995 (3)	167 (3)
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\text {v }}$	0.89 (2)	2.25 (2)	3.107 (3)	161 (3)
$\mathrm{O} 1-\mathrm{H} 1 F \cdots \mathrm{O}^{\text {v }}$	0.72 (3)	2.13 (4)	2.803 (3)	156 (3)
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O}^{\text {vi }}$	0.81 (2)	2.64 (2)	3.449 (3)	173 (3)
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 4^{\text {vii }}$	0.84 (2)	2.26 (2)	3.079 (3)	167 (2)
$\mathrm{O} 5-\mathrm{H} 5 B \cdots \mathrm{O} 2^{\text {ii }}$	0.80 (3)	2.19 (4)	2.940 (3)	157 (7)
$\mathrm{O} 1-\mathrm{H} 1 E \cdots \mathrm{O} 5^{\text {viii }}$	0.87 (4)	1.99 (4)	2.822 (3)	159 (3)
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{~N} 3^{\mathrm{ix}}$	0.86 (2)	2.03 (2)	2.879 (3)	169 (3)

Symmetry codes: (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $-x,-y,-z+1$; (iv) $-x,-y+1,-z$; (v) $x, y, z-1$; (vi) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$; (vii) $-x+1,-y,-z+1$; (viii) $x, y-1, z$; (ix) $-x+1,-y+1,-z+1$.

The water and amine H atoms were located in difference Fourier maps and refined isotropically. All the other H atoms were placed in

metal-organic papers

geometrically idealized positions and constrained to ride on their parent atoms with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology (No. RCT2004011).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SMART (Version ?), SAINT (Version ?) and SADABS. (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Cai, J.-W., Chen, C.-H., Liao, C.-Z., Yao, J.-H., Hu, X.-P. \& Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137-1142.

Cai, J.-W., Feng, X.-L. \& Hu, X.-P. (2001). Acta Cryst. C57, 1168-1170.
Chen, C.-H., Cai, J.-W., Liao, C.-Z., Feng, X.-L., Chen, X.-M. \& Seik, W. Ng. (2002). Inorg. Chem. 41, 4967-4974.

Kim, C. H. \& Lee, S. G. (2002). Acta Cryst. C58, m421-m423.
Sbai, F., Chkirate, K., Regragui, R., Essassi, E. M. \& Pierrot, M. (2002). Acta Cryst. E58, m337-m339.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

